Interacting Particle Markov Chain Monte Carlo

نویسندگان

  • Tom Rainforth
  • Christian A. Naesseth
  • Fredrik Lindsten
  • Brooks Paige
  • Jan-Willem van de Meent
  • Arnaud Doucet
  • Frank D. Wood
چکیده

We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both noninteracting PMCMC samplers and a single PMCMC sampler with an equivalent memory and computational budget. An additional advantage of the iPMCMC method is that it is suitable for distributed and multi-core architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Non-linear Markov Chain Monte Carlo via Self-interacting Approximations

Let P(E) be the space of probability measures on a measurable space (E, E). In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π ∈ P(E). Non-linear Markov kernels (e.g. Del Moral (2004); Del Moral & Doucet (2003)) K : P(E) × E → P(E) can be constructed to admit π as an invariant distribution and have superior mixing...

متن کامل

On the Concentration Properties of Interacting Particle Processes

This monograph presents some new concentration inequalities for Feynman-Kac particle processes. We analyze different types of stochastic particle models, including particle profile occupation measures, genealogical tree based evolution models, particle free energies, as well as backward Markov chain particle models. We illustrate these results with a series of topics related to computational ph...

متن کامل

Sharp Propagation of Chaos Estimates for Feynman-kac Particle Models

This article is concerned with the propagation-of-chaos properties of genetic type particle models. This class of models arises in a variety of scientific disciplines including theoretical physics, macromolecular biology, engineering sciences, and more particularly in computational statistics and advanced signal processing. From the pure mathematical point of view, these interacting particle sy...

متن کامل

Non-linear Markov Chain Monte Carlo

In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π. Non-linear Markov kernels (e.g. Del Moral (2004)) can be constructed to admit π as an invariant distribution and have typically superior mixing properties to ordinary (linear) MCMC kernels. However, such non-linear kernels often cannot be simulated exactly, so, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016